Supraledare

En magnet som svävar över en supraledare och därigenom påvisar Meissnereffekten. Experimentellt uppmätt elektrisk resistivitet (i godtycklig enhet) som funktion av temperatur i supraledaren YBa2Cu3O7.

Supraledning är ett fenomen i fasta tillståndets fysik som uppträder under en viss kritisk temperatur (ofta betecknad Tc) i vissa material. Ett supraledande material karakteriseras av sin oändligt stora elektriska ledningsförmåga och av att det inte kan innehålla något magnetiskt fält i innandömet (Meissnereffekten). Fenomenet förklaras teoretiskt av att elektronerna vid tillräckligt låga temperaturer parar ihop sig till Cooper-par.

Supraledning upptäcktes år 1911 av Heike Kamerlingh Onnes. Vid mätningar av ledningsförmågan av olika metaller vid låga temperaturer upptäckte han att kvicksilver blev supraledande vid en temperatur på 4,2 K (kelvin). Det finns många fler metaller som blir supraledande vid tillräckligt låg temperatur. Bland grundämnena har bly med 7,2 K ett av de högsta värden av kritisk temperatur.

År 1957 publicerade Bardeen, Cooper och Schrieffer en teori (BCS-teorin) som förklarar hur Cooperpar uppstår genom koppling till gitterrörelser och hur detta ger upphov till supraledning.

Ett stort genombrott för supraledande material kom 1986Bednorz och Alex Müller syntetiserade ett kopparoxidbaserat keramiskt ämne, (La,Ba)2CuO4, som blev supraledande under Tc = 35 K (–238 °C), en då rekordhög kritisk temperatur. Ett liknande ämne med formeln YBa2Cu3O7 hittades redan året efter. Detta blir supraledande vid 92 K, vilket gör att det kan hållas kylt med flytande kväve (kokpunkt 77 K) som är förhållandevis hanterbart och billigt.

Upptäckten av dessa högtemperatursupraledare belönades redan 1987 med Nobelpriset i fysik. Den kopparoxid-baserade typen av supraledare har idag ingen tillfredsställande teori, då de blir supraledande vid betydligt mycket högre temperaturer än vad man kan förklara med gittervibrationer enligt BCS-teorin – i fallet HgBa2Ca2Cu3O8 vid så höga temperaturer som 130 K (–143 °C) vid atmosfärstryck, vilket stiger till 164 K under högt tryck.

Tillämpningar

Supraledare har stora tekniska tillämpningar:

Se även

Referenser

  1. ^ J. G. Bednorz and K. A. Müller, Zeitschrift für Physik B 64, 189 (1986)
  2. ^ M. K. Wu et al., Physical Review Letters 58, 908 (1987)

Externa länkar